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Qualitative analysis shows [i] that the initial stage of a point-source thermal 
explosion in a homogeneous stationary gas is characterized by the predominance 
of radiative heat transfer. This finding is related to the nonlinear dependence 
of the coefficient of radiative heat transfer ~ on the temperature of the gas T. 
The function <(T) can be assigned in power form K = X/n T n-l, where X is a 
dimensional constant and n > I is the nonlinearity exponent. In complete agree- 
ment with the qualitative conclusions in [i], the author of [2] found by the 
asymptotic method that for short periods of time after the explosion, radiative 
heat transfer occurs independently of the motion of the gas and completely 
determines it. Here, the occurrence of the shock wave in [2] is connected with 
the convergence of the asymptotic solution on the well-known self-similar solution 
for a thermal explosion in a non-heat-conducting gas [3]. Conversely, the 
experimental findings and qualitative analysis of the problem in [i, 4~ indicate 
that an isothermal shock wave can occur within a finite period of time after a 
thermal explosion. The shock then separated from the region heated by radiation 
[I], while radiative heat transfer turns out to have a diminishing effect on its 
motion. The role of heat transfer is negligible far from the site of the explo- 
sion, and the motion of the shock becomes self-similar [3]. Using the example of 
a plane thermal explosion in a nonlinearly heat-conducting ideal gas for the case 
n >> i, here we propose an asymptotic representation of the solution of the above 
problem which will make it possible to analyze the generation of an isothermal 
shock wave. 

i. Formulation of the Problem and Its Asymptotic Analysis. Let a quantity of thermal 
energy Q = 2Q 0 be instantaneously released at the moment of time t = 0 in the plane x = 0 
in an infinite space filled with a stationary ideal gas having a density P0, specific heat 
cv, and temperature T = 0. It is convenient to take the following as characteristic 
parameters of the gas; P0 is the initial density of the gas; T o =-- [QoR/la] ~/(2n-I) is the 
temperature (R is the gas constant,a =: [(n- i)/2n(n-}-I)]*/(~-I)), W =: ~ is the velocity, 
L = %T(on-3/~)/cvpo]/-R is the length, t o = L/W is the time. Then the problem of a point- 
source explosion is described in dimensionless variables by the following system of 
equations 

~p ~pu ~u ou ~T r ~p = O, (I. i) 
o-7+.-~z =0 ,  ~ +u~Y:+~+-6-o-7 

OT OT' t'~ ~ tgu 02T " 

with the boundary and initial conditions 

T := OT"/Ox == u = 0, p =I at x =: ioo, t >O; (1.2) 

at t : = O ,  [xl <oo. (1.3) 
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Here, p(x, t), u(x, t), T(x, t) are the dimensionless density, velocity, and temperature of 
the gas; 6(x) is the Dirac delta function. 

It was shown in [i] that one feature of the process at n > i is its localization in 
space, i.e., there exists a surface [x] = xf(t) < ~ such that T = u = 0, p = i at Ixl > El(X). 
Thus, in regard to continuity the boundary conditions (1.2) are transferred to the surface 

i x l  = xf(t): 

T - -  OTn/Ox :-: u =: O, p == t a t  Ix[ = ~ ( t ) .  (1.4) 

lit should be noted that the function xf(t) is unknown and must be found during solution of 
the stated boundary-value problem. 

If we ignore motion of the gas and assume that u ~ 0, p ~ i, problem (1.1)-(1.4) reduces 
to the familiar problem of the proagation of heat from an instantaneous planar source [5]. 
The solution of the latter problem has the form 

~-~ .... ~ ( 1 . 5 )  r ( x ~ t )  = t x~ x(n) ,  x ~ =  ct'~+', 

temperature 

'r to evaluate the rate of propagation of hydrodynamic perturbations, which should be close to 
the isothermal speed of sound S = ~T-~t-1~! ~'I-~) . Comparing it with the characteristic 
rate of radiant heat transfer dxf/dt ~ t -nl~n+1), in accordance with [i] it must be con- 
cluded that at n > i radiative heat transfer completely determines the process as t ~ 0. 
It also follows from the comparison that in the case of plane symmetry, there is no simili- 
tude between the hydrodynamic processes and the process of radiative heat transfer at n > i 
and t + 0 either. Thus there are no self-similar solutions here which are analogous to 
those constructed in [6]. 

We will assume that the solution of boundary-value problem (1.1)-(1.4) at the limit at 
t + 0 continuously transforms into solution (1.5), and the initial conditions with respect 
to the dynamic variables u = 0, p = i. To construct an asymptotic representation of the solu- 
tion of problem (1.1-1.4) at t + 0, it is convenient to change over to new independent 
variables x, t + q = x/xf and new dependent variables 

T =  t "+~z? - 'Z (n ,  t),: 0 = 1 + t z F r ( n ,  t),  ( 1 . 6 )  
1 

'~ = t%~7 ~v (n, t), ~r = t ''+'~ (t), 

assuming that the functions X(~, t), r(q, t), v(q, t), c(t) and their derivatives have the 
order 0(i) at t + 0. In the formulation of Eqs. (1.6), system of equations (I.i) contains 

t h e  c o n s t a n t s  ~1 ..... (n - -  2)/(n - - t ) ,  ~ - -  (3 - -  n) / (n  - -  t ) ,  [31 := ( 2 n - -  3)/(n --- t ) ,  1~ == ( 2 ( 2 - - n ) ) / ( n  - -  1), 
while system (i.I) appears as follows in the new variables 

--  Or t Or #v ~ - t  n+l Or, ,  2 ( 2 - - n )  t de t dc dr - - 0 .  ( 1 . 7 )  
2 ~  r + t o t  n-l- I q-gii +87[  + c t ~ + , , - - 1  c r - g f - -  q c ,~t oq �9 

n .... 1 0~ l Ol~ + ~--1 Ov 8Z + C n--]. t n-F1 Z Or 3 - - n .  t de t dc Oi; 
n+-----~v + t o t  n_Ftqc ) -  ~ c t " + J v - ~ t  +?-i~ --~ O--~ + 7 - - ~  c V T f f  ---~l O, �9 , - -  c d t  011 

2(2--~) 2~1--1 2(2--7"1,) 2~--1 
t 1 0% n - t  t n + l  0% - -  a v  0% 2 t de  t dc OZ i O~Z n 

n + i Z - - n ' - ' + - - - l r l S " ~  + e  v - g q + ( k - - ! ) c ~ - a t n + a % ' g q + t - g F + , 7 2 { ' - J ' ) ~ - d F - - ~ ] ~  dtOq p On a" 

System (1.7) must be augmented by boundary conditions which follow from Eqs. (1.3) and 
(1.4). The above-formulated problem is symmetrical relative to ~ = 0. Thus, we will hence- 
:forth limit ourselves to the region q > 0. Then instead of conditions (1.4) we can write 
boundary conditions of the following form in the new variables 

%=8%~8q = v= 0~ r = 0 at ~ = I, t>0; (1.8) 

0%]a~ ~ V-= 0 at ~ == 0, t •0. (l.g) 
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Initial conditions (1.3) turn out to be satisfied due to the above assumptions made regarding 
the character of the solutions at t + 0. 

If we ignore terms of the order O(t) in Eqs. (1.7), then the function X(n, t) = x(q) and 
c(t) = const are determined independently in the form (1.5), while for v and r we obtain the 
relations 

2 , ~ -  t t Or 8v n -- t t av OZ 
n +  i r - - ~  n ~ -  + ~-~ = O~ n T i  v _ ~--~-q q~-~ + ~T = O, ( 1 . 1 0 )  

which coincide with the first approximation in [2]. In this approximation, the functions 
r(q, t) = r(q), v(q, t) = v(q) are determined from (1.8) and (i. I0) in quadratures, while 
condition (1.9) is satisfied automatically (see [2]). 

Equations (i.i0) are singularly perturbed at n + ~. Thus, it is necessary to assume 
[7, 8] that if n >> i, then when q + i the functions v(n) and r(q) have the character of a 
boundary layer within which the derivatives #r/Oq >> I, #v/aT] >> I . Following [7, 8] to explain 
the features of the behavior of the solutions of problem (1.7-1.9) at n >> i and n ~ I, we 
change the scales of the independent variable q = i - e~q * and dependence variables 
r = e~r*, v == 8~v * , where ~ = i/n << i. By inserting these relations into system (1.7) we 
find that m = i, ~ = -i, ~ = 0. The equations in the altered variables are not presented 
here due to their awkwardness. It turns out that n* = 0(I) within the boundary layer, and it 
is necessary to the terms added to Eqs. (i. I0) even at t = O(i/n) << i. Thus, if as the 
first approximation we choose a relation which describes the solution of the stated problem 
with an accuracy that is uniform with respect to t = O(I/n) << 1 throughout the region 
0 < N < i, then in the former variables we obtain 

2n -- I ! ~'~r av 
n-~--q-T r-- n§ I ~1~ + ~ - A + O(t2)~ (I.ii) 

~n- - I  9(2--n) 

n - -  [ I O~, a% t n + l  c n - - I  Or 

n q- t v - -  "~'+-'i l l - ~  + -6-q + l + D X T~ = B "F O (t~)" 

2n--1 2(2--n) 2n,--1 2(2--n) 2n--1 2(Z--n} 
~ r  n + l  C "n--I ~ r v  Ol~ ~ n + l  c ~--1 r t n q - l C  n - - I  Here,A= --t~---t ~-~-,: B= --t~-- va-~, D = r has the asymptotic 
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order O(t). Equations (1.5) remain valid in this approximation for X and c. Thus, the 
problem reduces to the study of Eqs. (i. Ii) with boundary conditions (1.8) and (1.9). 

2. Numerical Analysis of the Integral Curves. We ignore quantities of the order O(t) 
in system (!.ii), which corresponds formally to A = B = D = 0. Then by reducing the system 
to canonical form we can ascertain that it contains a singular point at q = Ds. The position 

2n--1 2(2--n) 
2 

of this point is found from the relation ~]s=(n + i)2t~+Ic ~-i %(~s) Thus, instead of (I.ii), 
it is convenient to examine the equivalent independent system 

2n-- 1. 2(2--~0 
dv  n - - t  OX (2n i )  t n+ l  n-i d'-~ = ~ ~lv + ~1 ~--~ + - -  c xr~ ( 2 . 1 )  

d r  2n  - -  1 rTi + ( n  - -  t )  v + (n  + 1) aX 
dr  n + I E~ ~ 

2 n - - I  2(2--~n) 
all] t 2 ( n  J~) t n+, C n--1  
d~ n -7- t 11 - -  + X, 
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Noting that the asymptote ~ ~ qs corresponds to �9 + -~, we divide the problem comprised 

of system (2.1) and conditions (1.8), (1.9) with the familiar function X(q) (1.5) into two 
Cauchy problems in accordance with two sets of initial conditions: v = r = 0, q = 1 and 
v = q = 0, r = r 0 . The unknown constant r 0 is determined by "joining" the solutions of both 
Cauchy problems at �9 ~-~. 

The Cauchy problems were integrated numerically by the modified Eulerian method [9] with 
the step At = 4.1. Here, in the interval 0 < 1 - q < 10 -4 the integral curve was calculated 
from the asymptotic representation in [I0]. The calculations were repeated with a smaller 
step AT I = &T/4 to check the numerical scheme. The calculated results in Figs. 1 and 2 were 
used to project the integral curve on the planes v-q and r-~ for a value of the nonlinearity 
index n = 6 (lines 1-4 correspond to t = 0; 0.i0; 0.15; 0.20). The position of the singular 
point is indicated by arrows. 

It can be seen that the mass of gas enveloped by the motion is gradually concentrated 
near the boundary of the region heated by radiation. The motion acquires the character of a 
shock wave [2]. Compared to [2], the present solution contains a singular point. In connec- 
tion with this, we note that it is the very presence of a singular point that makes it 
impossible to construct continuous solutions to similarity problems (see [6, ii], for example). 
A similar situation arises in the present case as well. 

Analysis of the integral curves obtained shows that the functions v(q) and r(q) undergo a 
removable discontinuity when crossing the singular point q = qs" Beginning with the moment 
of time t % 0.225, a sharp point appears at q = qs in the velocity and pressure profiles (see 
curve 5 in Figs. 1 and 2 for t = 0.23), which is physically unrealistic. We should expect 
the occurrence of an isothermal shock wave at t < 0.225, while in the given approximation the 
solution turns out to be continuous for any moment of time t. Thus, to confirm the absence 
of a continuous solution, we increase the accuracy of the asymptotic representation by taking 
into account the initially discarded terms of the order O(t). To do this, we need to calculate 
the differential expressions for A and B in (I.ii)from the already-known first approximation 
as the functions A = A0(~, t) and B = B0(~, t). We then repeat the calculation of system 
(i.ii) by the above-described method, assuming that A = A0(~, t) and B = B0(T, t). 

Here, we calculated A0(~ , t) and B0(T, t) by means of a two-point difference scheme. 
The results of the calculations are shown in Figs. 3 and 4 by dashed lines (curves 1-4 are for 
t = 0.07; 0.08; 0.09; 0.094; the solid lines correspond to the first approximation). It can 
be seen that the solution becomes ambiguous beginning with the moment of time t = t* % 0.092. 
It follows from the physically natural requirement of nonambiguity of the integral curve that 
system (i.ii) has no continuous solution. Evidently the solution must contain an isothermal 
discontinuity at t > t *. 
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Thus, it was shown that in the asymptotic analysis of the motion of a noniinearly heat- 
conducting ideal gas at t* ~ 0 and n >> i, occurring in a point-source thermal explosion, the 
appearance of a dynamic boundary layer near the boundary of the heated zone Ixl = xf(t) 
must be taken into account even in the first approximation. In particular, this makes it 
impossible to construct a continuous asymptotic representation of the solution of the 
problem, at least when t > t*. The moment of time t* may be physically related to the moment 
of appearance of an isothermal shock wave. 

In conclusion, we should emphasize that the above asymptotic analysis is based essen- 
tially on the physically valid assumption of the predominance of radiative heat transfer at 
n >> i and t + 0 [I]. The applicability of this assumption also determines the reliability 
of the asymptotic representations constructed. 

We thank K. B. Pavlov for his constant attention to the work and his critical observations~ 
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